
INFORMATION-DRIVEN CONTROL OF PRODUCT GENERATION

AND RECONCILIATION: Generating Cassini ISS and VIMS

Data Products on a Budget

A. Culver, R. Patel, A. Stanboli, H. Lee, S. Noland, J. Diehl, C. Avis, J. Henricks

Caltech/Jet Propulsion Laboratory

Introduction

The lengthy 12-year Cassini mission duration brings severe pressure to reduce operations costs.

However, mission costs are pushed upward by complex science desires and vast spacecraft and

instrument capabilities which must be used to their fullest. Regardless of the complexities, in the

end, science data product generation essentially consists of telemetry processing, data

assessment and file delivery. Fundamentally these processes can be information-driven, and as

such, they are ideally suited to being automated. Therefore, the key to cost savings is to

automate by developing software that uses information for control of product generation rather

than to rely solely upon more costly human resources to perform the same tasks. This paper

discusses the design and implementation of the automated Cassini control function, a concept

which is extensible to any subsystem required to perform systematic, well-defined, data-driven or

time-driven processing.

Driving Requirements - Why Automate?

Given the comparatively long duration of the mission (7+ years for cruise and 4 years for the

planned tour), it is vital to constrain the operations cost for product generation and delivery.

Cassini is unlike shorter duration missions for which it might be cost effective to hire a large

workforce for a brief amount of time to manually generate data products. Instead, Cassini enjoys

a lengthy cruise phase allowing for relatively long-term development to support operations. The

decision to automate was initially considered for three reasons: 1) the ground system is required

to limit its workforce to prime shift operations, 2) some products must be generated and delivered

during non-prime shift times (as described below), and 3) funding for operations workforce is

minimal.

The ground system must generate and deliver Imaging Science Subsystem (ISS) and Visible and

Infrared Mapping Spectrometer (VIMS) data products in a timely manner. These data products

are delivered to two separate types of recipients: the Navigation team and the Science teams.

The Navigation team uses a subset of the estimated 750,000+ ISS images to perform precise

orbit determination, from which critical trajectory/orbital correction maneuvers are planned.

These critical Optical Navigation images must be delivered to the Navigation team within 20

minutes of the time the data reaches Earth. For the Science teams, initial product delivery is

required within 2 days, and final product delivery is required within 12 days of the time the data

reaches Earth. Product accounting (identification and explanation of data gaps) and assessment

reports must also be delivered to the Science teams within that same 12-day period. Finally, life-

of-mission (LOM) storage is required for all data products generated.

The fundamental requirements to 1) constrain the operations cost and 2) deliver products in a

timely manner strongly suggest that an automated ground data system is necessary to support

both the ISS and the VlMS instruments for the Cassini Tour phase. Such a system has to be

self-monitoring, near "lights out," and capable of being operated during prime shift by a small

workforce while, at the same time, meeting the timely product delivery requirements demanded

by the Navigation and Science teams. In the cost-capped Cassini budgetary environment, money

spent generating data products reduces the resources available for science analysis (the reason

for the mission.) Resources spent during cruise to develop automation become investments in

the ultimate mission science return.

Development cost constraints dictate that resources not be spent duplicating existing functions.

Therefore, in order to cost effectively design and implement an automated system, the ground

system is integrated with existing multimission capabilities, and it inherits capabilities from ground

software developed before the launch. Using existing multimission capabilities reduces the

development cost to acquire telemetry data from the Deep Space Network, but it limits flexibility

and introduces interface issues. These interface issues primarily concern operations, but they

also impact the ability to reliably automate data production. Specifically, the concerns include

the ability to establish and maintain connectivity across flight operations firewalls, the dependency

on remote servers maintained by other organizations, and the management of configuration

changes. Pre-launch ground software is a good starting point for data product generation, but it

requires a transition from a manually executed program for generating a small set of products to

an automated system capable of high volume production, data assessment and product

reconciliation.

2

The Processes

The processes implied by the Cassini product delivery requirements include activities such as:

scheduling telemetry processing; accessing and deciphering telemetry; product formatting,

delivery and quality assessment; reconciling expected data products with products that are

received; and accounting for missing data. These processes and their interactions are illustrated

in Figure 1. Many of these processes were accomplished manually during the Cassini cruise

phase including the Jupiter flyby. Accordingly, human resources were necessary to launch

programs and compile information from a variety of sources to complete the tasks. However, the

processes within the Cassini mission lend themselves well to the automation of information-driven

events. Although these processes are Cassini-specific, this type of understanding of the system

is essential before automation can proceed. Once the processes, their interactions, and their

dependence on information are defined, the processing can be considered for automation.

Figure 1. Product generation process flow diagram

3

The Design Challenge

The Cassini challenge was to create a control system for data production that would be driven by

information rather than being driven by human resource considerations. The control system must

access and utilize information on predictable events, and act upon information derived from the

data itself. More precisely, it must become an automated, self-monitoring, fail-safe system that

can accomplish production while still allowing for human intervention when necessary.

Information Needed for Automation

Both static and dynamic types of information are needed to transition formerly manual processes

into software components.

Static information needed to drive the automation consists of several categories: processing rules

and parameters, job and task sequencing, location of input/output data, system configuration, and

ProjectAnstrument-specific data.

Processing rules and parameters include information such as how soon after a downlink to begin

product generation (or reconciliation). This category also includes information regarding the data

source, query values and a multitude of parameters required for telemetry processing jobs.

Job and task sequencing includes a sequential list of the tasks (single programs) to be performed

to accomplish a job (i.e., a prescribed work product that includes one or more tasks). The relative

timing of jobs is essential as well. For example, the system should be capable of waiting until all

telemetry processing within the upstream ground data system is complete before attempting

reconciliation.

The /ocations of input and output data are also needed for each task within the automated system

in order to locate and perform operations on data generated or maintained by other tasks. The

tasks also need to distribute output data to external teams while maintaining life-of-mission

storage.

System configuration provides a mechanism for tracking software server locations and

assignments. For example, when servers are distributed on a multitude of hosts on a shared

network, system configuration allows for identification of servers throughout the network. It also

includes server assignments, such as servers dedicated to critical optical navigation image

processing.

4

Project data is used as a basis for product label meta-data and includes mission phases,

sequence boundaries and product delivery routing information.

Finally, insfrument-specific data is necessary due to deferred flight software development. Over

the span of cruise and tour, different algorithms have been implemented to decipher telemetry

from the instruments, and the distinction between algorithm versions is time-based. The

automated system must know which algorithm to apply to data generated at any given time.

Dynamic information is also needed to drive the automation and includes the following categories:

predicted events from sequence generation, generated product information, system resource

availability and task status.

The predicted events allow visibility into expected products (including what type, how many and

when they will be generated) and visibility into downlink windows which are essential for knowing

when data is expected on the ground.

Generated product information includes product metadata and reconciliation assessment results.

This information is key to identifying data based on a variety of parameters and provides the

mechanism to account for lost data or schedule re-attempts to locate missing data.

Knowledge of system resources is necessary for the automated system to a) know which servers

are available to handle work, and b) distribute work to idle servers.

system must have access to task status information in order to a) monitor processing to

determine whether a failure has occurred, b) determine subsequent processing, and c) allow for

the possibility of interjected directives from humans.

Similarly, the automated

The Design

The key to this design’s capability is the use of a database to drive the engine of the product

generation and reconciliation processes. This solution uses the database as a persistent,

ongoing repository of both static and dynamic information. The database is organized in related

tables used by the controlling processes to prepare, schedule, initiate and monitor the data

processing tasks, as well as to pass data between tasks and maintain their status and history. A

set of software servers distributed across multiple platforms initiates and executes processing

based upon the information residing within the database. This design enables the servers to

startup, shutdown and restart safely, and to determine uncompleted work based on the

information in the database tables, thereby achieving stateless servers. This design minimizes

5

corruption of the system in the event of a failure. Because the servers primarily communicate

through the database, throughput is optimized as processing is distributed across multiple

machines. Lastly, and perhaps most importantly, the static information in the database can be re-

configured so that new tasks or processing can be added, or processing parameters can be

modified without disrupting or restarting the system.

Server Functionality

Five types of software servers work together as the engine to control, monitor and maintain

performance for the product generation and reconciliation processes: the Request Analyzer,

Scheduler, Control, SubControl and Post Request Processor. These servers are described

below, and are also illustrated with their database interactions in Figure 2.

The Request Analyzer ingests predicted instrument and downlink pass event information into the

database. This server is responsible for defining all processing jobs, and splits the jobs along

project and instrument boundaries as necessary. Recall that a "job" is a prescribed work product

that includes one or more processing tasks.

The responsibilities of the Scheduler server are simple: periodically query the database for jobs

eligible for processing, and release those eligible jobs to the Control server.

The Control server is the heart of the automated system. It accepts jobs to initiate directly from

the Scheduler server. Next, the Control queries the database for available SubControl servers

waiting to process jobs, and passes jobs to the appropriate SubControl servers. The Control is

responsible for updating the database with processing assigned to each SubControl, and then the

Control monitors the system to ensure that each SubControl server is executing jobs as

expected.

The SubControl servers are responsible for executing the tasks needed to accomplish product

generation and reconciliation. There may be multiple SubControl servers configured for the

system, in order to distribute CPU-intensive task processing across multiple platforms. Upon

startup, each SubControl waits to accept jobs ready for processing from the Control server. Next,

the SubControl queries the database to identify the tasks and task execution sequence needed to

complete the jobs. In addition, the task processing parameters are obtained from the database.

Then the SubControl constructs any ancillary parameter files required by the task software, and

initiates sequential task processing necessary to complete the job. The SubControl is designed

to handle and report error conditions. Furthermore, to protect the system in the event of a

6

Control failure, the SubControl regularly queries the database and accepts unfinished processing

jobs.

The Post Request Processor server performs a capability derived from the design. In order to

maintain system performance, the database tables containing dynamic information must remain

fairly small. When job processing is complete, the Post Request Processor archives the

processing history in a static database table, then removes relevant entries for the job from the

dynamic database tables. Also, the Post Request Processor archives data products, report files,

log files, processing metadata and parameter files once the job is complete, thus releasing

needed disk space for future jobs.

Databaselserver Interaction Diagram
(Rectangles - Database tables,

Ovals . Persistent servers)

Figure 2. DatabaseKerver interaction diagram

Ada pta b i I i ty

The control system concept is extensible to other missions and other types of data processing

once the requirements and processes for that work are defined. By using the database as the

7

repository for processing rules/parameters and jobrtask sequencing, the system is dynamically

configurable and adaptable to a variety of other types of ground data processing. Whether

processing is sequential and continuously flowing (data-driven) or requires selecting in advance

the time when data will be processed (time-driven), once processing rules are defined, the control

system is capable of automating production, thus allowing for valuable cost-savings where human

resources are concerned.

Conclusion

The control system to accomplish data processing for Cassini ISS and VlMS data products has

been implemented and was put into operations in August 2003. It has already proven to be an

effective way to minimize operations cost by reducing the amount of workforce needed to

schedule, generate and reconcile data products. As the Cassini spacecraft passes through its

Approach Science phase and into orbital operations, the automated, self-monitoring system is

prepared to deal with an increasingly higher volume of data without requiring an increase in

workforce.

When Cassini flew by Jupiter in December 2000, there was an opportunity to gain insight about

the level of effort required to support ISS and VlMS data processing manually. Compared to the

statistics collected at Jupiter, the automated system is easily capable of handling the expected

quadrupling of the data volume experienced at Jupiter, sustaining production indefinitely, and

accomplishing that work with 1.5 times the workforce. The reconciliation and assessment reports

are more detailed and robust than the manual process at Jupiter. In addition, the data products

and reports are delivered in adherence to the timely performance requirements - even the critical

optical navigation images, unlike the Jupiter experience when sometimes reconciliation

processing lagged months behind the actual data acquisition. Some comparisons from Jupiter

include:

JUPITER

Manual production

5,000 data products/month

Prime shift, 2-3 times/week

Limited data accounting

30+ days to complete reconciliation

1.7 employees needed

SATURN

Lights dim production

19,000 data products/month

Round-the-clock production

Full data accounting

12 days to complete reconciliation

2.5 (or fewer) employees needed

8

